Ghrelin impedes oxidative stress induced intestinal epithelial cell apoptosis through varying signaling pathways

Authors

  • Muhammad Talha Asad
  • Muhammad Usman Arshad
  • Saleem Arif

DOI:

https://doi.org/10.48111/2022.01.02

Keywords:

Ghrelin, Intestinal apoptosis, signaling pathways, Intestinal epithelial cells, Intestinal tract

Abstract

Background: Ghrelin, a gut brain peptide, has been primarily studied in the regulation of body weight homeostasis. Recent studies indicate, however, that it has potent anti-apoptotic effects in various cell types and exogenous ghrelin prevents gastric mucosa from ethanol-induced ulcer formation. Given ghrelin is cytoprotective, here we hypothesized ghrelin’s anti-apoptotic effect in intestinal epithelial cells when exposed to severe oxidative stress, which plays a key role in the pathogenesis of various intestinal disorders.

Materials & Methods: Intestinal epithelial cells, FHs74Int, IEC-6 and Caco-2 were used to assess anti-apoptotic effects of ghrelin following H2O2 treatment by TUNEL technique and flowcytometric analyses. In addition, mechanisms responsible for these effects were explored in relation to relevant signaling pathways including PI3K/Akt pathway and cytochrome ‘c’ dependent caspase-3 activation.  PI3K/Akt and mitochondrial cytochrome ‘c’ release was assessed by western analysis and caspase-3 activity was determined by ELISA and Immunoflorescence.

Results: H2O2 potently increases the intestinal epithelial apoptosis and necrosis. Ghrelin inhibits intestinal epithelial cell apoptosis through growth hormone secretagogue receptors (GHS-Rs). Further, ghrelin’s anti-apoptotic effect against H2O2 –induced apoptosis is associated with activation of PI3K/Akt, inhibition of mitochondrial cytochrome-c release and like wise inhibition of caspase-3 activation. 

Conclusion: In aggregate, our findings suggest that ghrelin inhibits oxidative stress-induced apoptosis in intestinal epithelial cells and hence might serve as a therapeutic strategy in states associated with intestinal mucosal injury, where oxidative stress plays a central role.

References

Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407(6806):908-913. doi:10.1038/35038090

Wu JT, Kral JG. Ghrelin: integrative neuroendocrine peptide in health and disease. Ann Surg. 2004;239(4):464-474. doi:10.1097/01.SLA.0000118561.54919.61

Murray CDR, Kamm MA, Bloom SR, Emmanuel A V. Ghrelin for the gastroenterologist: history and potential. Gastroenterology. 2003;125(5):1492-1502. doi:10.1016/J.GASTRO.2003.06.002

Smith RG, Leonard R, Bailey ART, et al. Growth hormone secretagogue receptor family members and ligands. Endocrine. 2001;14(1):9-14. doi:10.1385/ENDO:14:1:009

Petersenn S. Structure and regulation of the growth hormone secretagogue receptor. Minerva Endocrinol. 2002;27(4):243-256. Accessed June 29, 2022. https://europepmc.org/article/med/12511847

Dass NB, Munonyara M, Bassil AK, et al. Growth hormone secretagogue receptors in rat and human gastrointestinal tract and the effects of ghrelin. Neuroscience. 2003;120(2):443-453. doi:10.1016/S0306-4522(03)00327-0

Gnanapavan S, Kola B, Bustin SA, et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab. 2002;87(6):2988-2991. doi:10.1210/JCEM.87.6.8739

Min SK, Cho YY, Pil GJ, et al. The mitogenic and antiapoptotic actions of ghrelin in 3T3-L1 adipocytes. Mol Endocrinol. 2004;18(9):2291-2301. doi:10.1210/ME.2003-0459

Maccarinelli G, Sibilia V, Torsello A, et al. Ghrelin regulates proliferation and differentiation of osteoblastic cells. J Endocrinol. 2005;184(1):249-256. doi:10.1677/JOE.1.05837

Nanzer AM, Khalaf S, Mozid AM, et al. Ghrelin exerts a proliferative effect on a rat pituitary somatotroph cell line via the mitogen-activated protein kinase pathway. Eur J Endocrinol. 2004;151(2):233-240. doi:10.1530/EJE.0.1510233

Duxbury MS, Waseem T, Ito H, et al. Ghrelin promotes pancreatic adenocarcinoma cellular proliferation and invasiveness. Biochem Biophys Res Commun. 2003;309(2):464-468. doi:10.1016/J.BBRC.2003.08.024

Murata M, Okimura Y, Iida K, et al. Ghrelin modulates the downstream molecules of insulin signaling in hepatoma cells. J Biol Chem. 2002;277(7):5667-5674. doi:10.1074/JBC.M103898200

Baldanzi G, Filigheddu N, Cutrupi S, et al. Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. J Cell Biol. 2002;159(6):1029-1037. doi:10.1083/JCB.200207165

Choi K, Roh SG, Hong YH, et al. The role of ghrelin and growth hormone secretagogues receptor on rat adipogenesis. Endocrinology. 2003;144(3):754-759. doi:10.1210/EN.2002-220783

Sibilia V, Rindi G, Pagani F, et al. Ghrelin protects against ethanol-induced gastric ulcers in rats: studies on the mechanisms of action. Endocrinology. 2003;144(1):353-359. doi:10.1210/EN.2002-220756

Pasupathy S, Homer-Vanniasinkam S. Ischaemic Preconditioning Protects Against Ischaemia/Reperfusion Injury: Emerging Concepts. Eur J Vasc Endovasc Surg. 2005;29(2):106-115. doi:10.1016/J.EJVS.2004.11.005

Kolios G, Petoumenos C, Nakos A. Mediators of inflammation: production and implication in inflammatory bowel disease. Hepatogastroenterology. 1998;45(23):1601-1609. Accessed June 29, 2022. http://europepmc.org/article/med/9840114

Kruidenier L, Verspaget HW. Antioxidants and mucosa protectives: realistic therapeutic options in inflammatory bowel disease? Mediators Inflamm. 1998;7(3):157-162. doi:10.1080/09629359891081

Hsueh W, Caplan MS, Qu XW, Tan X Di, De Plaen IG, Gonzalez-Crussi F. Neonatal necrotizing enterocolitis: clinical considerations and pathogenetic concepts. Pediatr Dev Pathol. 2003;6(1):6-23. doi:10.1007/S10024-002-0602-Z

Petrosillo G, Ruggiero FM, Pistolese M, Paradies G. Reactive oxygen species generated from the mitochondrial electron transport chain induce cytochrome c dissociation from beef-heart submitochondrial particles via cardiolipin peroxidation. Possible role in the apoptosis. FEBS Lett. 2001;509(3):435-438. doi:10.1016/S0014-5793(01)03206-9

Nishimura G, Proske RJ, Doyama H, Higuchi M. Regulation of apoptosis by respiration: cytochrome c release by respiratory substrates. FEBS Lett. 2001;505(3):399-404. doi:10.1016/S0014-5793(01)02859-9

Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998;282(5392):1318-1321. doi:10.1126/SCIENCE.282.5392.1318

Jourd’heuil D, Morise Z, Conner EM, Grisham MB. Oxidants, transcription factors, and intestinal inflammation. J Clin Gastroenterol. 1997;25 Suppl 1(SUPPL. 1). doi:10.1097/00004836-199700001-00011

Li JM, Zhou H, Cai Q, Xiao GX. Role of mitochondrial dysfunction in hydrogen peroxide-induced apoptosis of intestinal epithelial cells. World J Gastroenterol. 2003;9(3):562. doi:10.3748/WJG.V9.I3.562

Activation of NF-kappaB and apoptosis of intestinal epithelial cells induced by hydrogen peroxide - PubMed. Accessed June 29, 2022. https://pubmed.ncbi.nlm.nih.gov/12162897/

Waseem T, Javaid-ur-Rehman, Ahmad F, Azam M, Qureshi MA. Role of ghrelin axis in colorectal cancer: a novel association. Peptides. 2008;29(8):1369-1376. doi:10.1016/J.PEPTIDES.2008.03.020

AACRFAK10-20021.

Dufourt G, Demers MJ, Gagné D, et al. Human intestinal epithelial cell survival and anoikis. Differentiation state-distinct regulation and roles of protein kinase B/Akt isoforms. J Biol Chem. 2004;279(42):44113-44122. doi:10.1074/JBC.M405323200

Sheng H, Shao J, DuBois RN. Akt/PKB activity is required for Ha-Ras-mediated transformation of intestinal epithelial cells. J Biol Chem. 2001;276(17):14498-14504. doi:10.1074/JBC.M010093200

Wright K, Kolios G, Westwick J, Ward SG. Cytokine-induced apoptosis in epithelial HT-29 cells is independent of nitric oxide formation. Evidence for an interleukin-13-driven phosphatidylinositol 3-kinase-dependent survival mechanism. J Biol Chem. 1999;274(24):17193-17201. doi:10.1074/JBC.274.24.17193

Wu H, Owlia A, Singh P. Precursor peptide progastrin(1-80) reduces apoptosis of intestinal epithelial cells and upregulates cytochrome c oxidase Vb levels and synthesis of ATP. Am J Physiol Gastrointest Liver Physiol. 2003;285(6). doi:10.1152/AJPGI.00216.2003

Söderholm JD, Perdue MH. Stress and gastrointestinal tract. II. Stress and intestinal barrier function. Am J Physiol Gastrointest Liver Physiol. 2001;280(1). doi:10.1152/AJPGI.2001.280.1.G7

Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol. 2003;284(1). doi:10.1152/AJPGI.00342.2002

Van Assche G, Rutgeerts P. Physiological basis for novel drug therapies used to treat the inflammatory bowel diseases. I. Immunology and therapeutic potential of antiadhesion molecule therapy in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 2005;288(2). doi:10.1152/AJPGI.00423.2004

Galindo MF, Jordán J, González-García C, Ceña V. Reactive oxygen species induce swelling and cytochrome c release but not transmembrane depolarization in isolated rat brain mitochondria. Br J Pharmacol. 2003;139(4):797-804. doi:10.1038/SJ.BJP.0705309

Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91(4):479-489. doi:10.1016/S0092-8674(00)80434-1

King WG, Mattaliano MD, Chan TO, Tsichlis PN, Brugge JS. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol Cell Biol. 1997;17(8):4406-4418. doi:10.1128/MCB.17.8.4406

Roche S, Koegl M, Courtneidge SA. The phosphatidylinositol 3-kinase alpha is required for DNA synthesis induced by some, but not all, growth factors. Proc Natl Acad Sci U S A. 1994;91(19):9185-9189. doi:10.1073/PNAS.91.19.9185

Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96(6):857-868. doi:10.1016/S0092-8674(00)80595-4

Downloads

Published

2022-03-30

Issue

Section

Original Research Communication

How to Cite

Ghrelin impedes oxidative stress induced intestinal epithelial cell apoptosis through varying signaling pathways. (2022). Archives of Surgical Research, 3(1), 3-11. https://doi.org/10.48111/2022.01.02